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Abstract. All finite-dimensional indecomposable solvable Lie algebrasL(n, f ), having the
triangular algebraT (n) as their nilradical, are constructed. The number of non-nilpotent
elementsf in L(n, f ) satisfies 16 f 6 n − 1 and the dimension of the Lie algebra is
dimL(n, f ) = f + 1

2n(n− 1).

Résuḿe. Toutes les alg̀ebres de Lie ŕesolubles et ind́ecomposables de dimension finie, qui
ont un nilradical triangulaireT (n), sont construites. Le nombre d’éléments non nilpotentsf
dansL(n, f ) satisfait 16 f 6 n − 1 et la dimension de l’alg̀ebre de Lie est dimL(n, f ) =
f + 1

2n(n− 1).

1. Introduction

The purpose of this paper is to construct all indecomposable solvable Lie algebras that have
‘triangular algebras’T (n) of dimension 1

2n(n − 1) (3 6 n < ∞) as their nilradicals. By
triangular algebraT (n), we mean the nilpotent Lie algebra isomorphic to the Lie algebra
of strictly upper triangularn × n matrices. The motivation for such a study is manyfold.
From a mathematical point of view, this investigation is part of the classification of all finite
dimensional Lie algebras. The Levi theorem [1, 2] tells us that every finite-dimensional
Lie algebraL is a semidirect sum of a semisimple Lie algebraS and a solvable ideal (the
radicalR):

L = S B R [S, S] = S [S,R] ⊆ R [R,R] ⊂ R. (1.1)

Semisimple algebras over fields of complex or real numbers have been classified by Cartan
[3]. However, the classification of solvable Lie algebras is only complete for low dimensions
(dimL 6 6) [4–7]. From Maltsev [8] we know some important results on the structure of
Lie algebras, but not on solvable Lie algebras with a given nilradical. More recent articles
provided a classification of all Lie algebras with Heisenberg or Abelian nilradicals [9, 10].

As far as physical applications are concerned, we note that solvable Lie algebras often
occur as Lie algebras of symmetry groups of differential equations [11]. Group invariant
solutions can be obtained by symmetry reduction, using the subalgebras of the symmetry
algebra [12]. In this procedure an important step is to identify the symmetry algebra and
its subalgebras as abstract Lie algebras. A detailed identification presupposes the existence
of a classification of Lie algebras into isomorphism classes.

In section 2, we formulate the problem and the general strategy that we will adopt. In
section 3, we illustrate the procedure for the particular casen = 4. Guided by this last
section, in section 4 we present the general classification for arbitraryn.
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2. Formulation of the problem

2.1. General concepts

Let us first recall some definitions and known results on solvable Lie algebras. A Lie
algebraL is solvable, if its derived seriesDS terminates, i.e.

DS = {L0 ≡ L,L1 = [L,L], . . . , Lk = [Lk−1, Lk−1] = 0} (2.1)

for somek > 0.
A Lie algebraL is nilpotent, if its central seriesCS also terminates, i.e.

CS = {L(0) ≡ L,L(1) = [L,L(0)], . . . , L(k) = [L,L(k−1)] = 0} (2.2)

for somek > 0.
The nilradicalNR(L) of a solvable Lie algebraL is the maximal nilpotent ideal ofL.

This nilradicalNR(L) is unique and its dimension satisfies [5]

dimNR(L) > 1
2 dimL. (2.3)

Any solvable Lie algebraL can be written as the algebraic sum of the nilradicalNR(L)

and a complementary linear spaceF

L = F +̇NR(L). (2.4)

A Lie algebraL is decomposable if it can, by a change of basis, be transformed into a
direct sum of two (or more) subalgebras

L = L1⊕ L2 [L1, L2] = 0. (2.5)

An elementN of a Lie algebraL is nilpotent inL if

[. . . [[X,N ], N ] . . . N ] = 0 ∀X ∈ L. (2.6)

A set of elements{Xα} of L is linearly nilindependent if no nontrivial linear combination
of them is nilpotent.

A set of matrices{Aα}α=1...n is linearly nilindependent if no nontrivial linear combination
of them is a nilpotent matrix, i.e.(

n∑
i=1

ciA
i

)k
= 0 (2.7)

for somek ∈ Z+, implies ci = 0∀i.

2.2. Basic structure of the Lie algebra and general strategy

Let us consider the finite triangular algebraT (n) with n > 3 over the field of complex, or
real numbers (K = C or R). A basis for this algebra is

{Nik|16 i < k 6 n}
(Nik)ab = δiaδkb dimT (n) = 1

2n(n− 1) ≡ r. (2.8)

This basis can be represented by the standard basis of the strictly upper triangularn × n
matrices. The commutation relations are

[Nik,Nab] = δkaNib − δbiNak. (2.9)

We wish to extend this algebra to an indecomposable solvable Lie algebraL(n, f ) of
dimension1

2n(n− 1)+ f havingT (n) as its nilradical. In other words, we wish to addf
further linearly nilindependent elements toT (n). Let us denote them{X1, . . . , Xf }.
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The derived algebra [L,L] of a solvable Lie algebraL is contained in its nilradical [2].
The commutation relations will have the form

[Xα,Nik] = Aαik,pqNpq (2.10)

[Xα,Xβ ] = σαβpq Npq (2.11)

16 α, β 6 f 6 r Aαik,pq, σ
αβ
pq ∈ K.

(Here and in the rest of the paper, we use the Einstein summation convention over repeated
indices, unless stated otherwise). The commutation relations (2.10) can be rewritten as

[Xα,N ] = AαN
N ≡ (N12N23 . . . N(n−1)nN13 . . . N(n−2)n . . . N1n)

T

Aα ∈ Kr×r N ∈ Kr×1.

(2.12)

(The superscript T indicates transposition.) Here,N is a ‘column vector’ of basis elements
of NR(L) ordered by first taking the elementsNi(i+1) next to the diagonal, thenNi(i+2)

(removed two steps from the diagonal) etc. We shall call the matricesAα ‘structure
matrices’.

A classification of the Lie algebrasL(n, f ) thus amounts to a classification of the
structure matricesAα and the constantsσαβpq . The Jacobi identities have to be respected by
the following three types of triplets (those with threeN ’s are satisfied automatically)

{Xα,Nik, Nab}f > 1 {Xα,Xβ,Nik}f > 2 {Xα,Xβ,Xγ }f > 3

16 i < k 6 n 16 a < b 6 n 16 α, β, γ 6 f.
(2.13)

Which give us respectively the three equations

δkaA
α
ib,pqNpq − δbiAαak,pqNpq + Aαik,bqNaq − Aαik,paNpb + Aαab,piNpk − Aαab,kqNiq = 0

(2.14)

[Aα,Aβ ]ik,pqNpq = σαβkq Niq − σαβpi Npk (2.15)

σαβpq A
γ

pq,ik + σγαpq Aβpq,ik + σβγpq Aαpq,ik = 0. (2.16)

The equation (2.14) will give restrictions on the form of the structure matricesAα.
We will transform these matrices into a ‘canonical’ form by transformations that leave the
commutation relations (2.9) of theNR(L) invariant, but transform the matricesAα and the
constantsσαβpq . These transformations will be

(i) redefinition of all the non-nilpotent elements:

Xα −→ Xα + µαpqNpq µαpq ∈ K
⇒ Aαik,ab −→ Aαik,ab + δkbµαai − δiaµαkb

(2.17)

(ii) change of basis inNR(L):

N −→ GN G ∈ GL(r,K)
⇒ Aα −→ GAαG−1

(2.18)

(iii) linear combinations of the elementsXα and hence of the matricesAα.
Note that the elementN1n does not contribute in the transformation (2.17) since it commutes
with all the elements in theNR(L). Thusµα1n is not used in (2.17). Also, the matrixG has
to be suitably restricted in order to preserve the commutation relations (2.9) of theNR(L).
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From the equations (2.15) and (2.16) we obtain some relations between the matricesAα

and the constantsσαβpq . By exploiting the fact thatµα1n is not utilized in (2.17), forf > 2
we will make an additional transformation to simplify the constantsσ

αβ
pq , i.e.

Xα −→ Xα + µα1nN1n µα1n ∈ K
⇒ σαβpq −→ σαβpq + µβ1nAα1n,pq − µα1nAβ1n,pq .

(2.19)

(WhereAα −→ Aα, i.e. the structure matrices stay the same.) It will therefore be possible
to simplify some constantsσαβpq associated with the matricesAα,Aβ .

3. Illustration of the procedure for low dimensions

3.1. The casen = 3

In this case, the Lie algebraT (3) is isomorphic to the Heisenberg algebraH(1). As
mentioned previously, solvable Lie algebras with Heisenberg nilradicals were classified
earlier [9]. We will therefore considern > 3 from this point on. The dimensionn = 3 is
the only case for which there is an isomorphism between the triangular and the Heisenberg
Lie algebras.

3.2. The casen = 4

In this particular case, we have

Aα ∈ K6×6 N = (N12N23N34N13N24N14)
T. (3.1)

Let us first consider relations (2.14). We can separate them into two classes of equations.
The first arises from the triplets{Xα,Nik, Nkb}, 16 i < k = a < b 6 4, which give

Aαib,pqNpq + Aαik,bqNkq − Aαik,pkNpb + Aαkb,piNpk − Aαkb,kqNiq = 0

(no summation over k). (3.2)

The second class comes from the triplets{Xα,Nik, Nab}, 1 6 i < k 6 4, 1 6 a < b 6
4, k 6= a(b 6= i) and in this case equation (2.14) becomes

Aαik,bqNaq − Aαik,paNpb + Aαab,piNpk − Aαab,kqNiq = 0. (3.3)

We begin by considering equation (3.3). From each possible triplet associated with
this class of equation, we use the linear independence of the{Nlm} to determine relations
between the elements ofAα. For example, from the triplet{Xα,N12, N34}, we obtain

Aα12,13+ Aα34,24 = 0 Aα12,23 = Aα34,23 = 0. (3.4)

When we apply equation (3.3) to the 11 triplets associated to this equation, we find

Aα =


∗ 0 Aα12,34 Aα12,13 ∗ ∗
0 ∗ 0 ∗ ∗ ∗

Aα34,12 0 ∗ ∗ −(Aα12,13) ∗
0 0 0 ∗ (Aα12,34) ∗
0 0 0 (Aα34,12) ∗ ∗
0 0 0 0 0 ∗

 . (3.5)

Where∗ denote arbitrary elements unrelated to others in the matricesAα.
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In the same manner, we apply equation (3.2) to the four triplets associated with this
class of equation. This gives us some further relations between the matrix elements andAα

becomes

Aα =


Aα12,12 0 0 Aα12,13 ∗ ∗

Aα23,23 0 Aα23,13 Aα23,24 ∗
Aα34,34 ∗ −(Aα12,13) ∗

Aα12,12+ Aα23,23 0 (Aα23,24)

Aα23,23+ Aα34,34 (Aα23,13)

Aα12,12+ Aα23,23+ Aα34,34

. (3.6)

To simplify the form of the matrix (3.6), we carry out the transformation (2.17) for the
f matricesAα. Given the liberty of the five constantsµαpq for eachα independently (the
sixth one,µα14 does not contribute), we can arrange to have

Aα12,13 = Aα12,14 = Aα23,13 = Aα23,24 = Aα34,14 = 0. (3.7)

Therefore, each matrixAα can be transformed into

Aα =


Aα12,12 0 0 0 Aα12,24 0

Aα23,23 0 0 0 Aα23,14
Aα34,34 Aα34,13 0 0

Aα13,13 0 0
Aα24,24 0

Aα14,14


Aαik,ik =

k−1∑
p=i

Aαp(p+1),p(p+1).

(3.8)

These matrices must be linearly nilindependent otherwise theNR(L) would be larger than
T (4). In particular, this implies that we cannot simultaneously haveAα12,12 = Aα23,23 =
Aα34,34 = 0. Also, since we have three parameters on the diagonal, the nilindependence
between theAα implies that we have at most three non-nilpotent elements, i.e.

16 f 6 3. (3.9)

Let us now look at the casesf > 2. The structure matricesAα have the ‘canonical’
form given by (3.8), therefore the possibly nonzero elements of the commutators [Aα,Aβ ]
are

[Aα,Aβ ]12,24 [Aα,Aβ ]23,14 [Aα,Aβ ]34,13. (3.10)

By the linear independence of the{Nlm} and from (2.15), (3.10) and (2.11) we find that

[Aα,Aβ ] = 0 (3.11)

[Xα,Xβ ] = σαβN14. (3.12)

Finally, we consider the casef = 3. In view of the ‘canonical’ form of the structure
matricesAα and by relation (3.12), equation (2.16) becomes

σ 12A3
14,14+ σ 31A2

14,14+ σ 23A1
14,14 = 0. (3.13)

Moreover, the transformation (2.19) will modify the constantsσαβ into

σαβ −→ σαβ + µβ14A
α
14,14− µα14A

β

14,14. (3.14)

Hence, by using (3.14) forf = 2 and (3.14), (3.13) forf = 3, we obtain

[Xα,Xβ ] =
{
σαβN14 for A1

14,14 = · · · = Af14,14 = 0

0 otherwise.
(3.15)
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To further simplify the structure matrix, let us perform a transformation of the type
(2.18), i.e.

N −→ G1N G1 =


1 0 0 0 g1 0

1 0 0 0 g2

1 g3 0 0
1 0 0

1 0
1

 . (3.16)

This transformation leaves the commutation relations (2.9) of theNR(L) invariant, but
transforms the matricesAα −→ G1A

αG−1
1 ∀α, i.e.

Aα12,24 −→ Aα12,24+ g1(A
α
23,23+ Aα34,34− Aα12,12)

Aα23,14 −→ Aα23,14+ g2(A
α
12,12+ Aα34,34)

Aα34,13 −→ Aα34,13+ g3(A
α
12,12+ Aα23,23− Aα34,34).

(3.17)

Thus usingg1 we can eliminateAν12,24(16 ν 6 f ) of the specific matrixAν , provided that
Aν23,23+ Aν34,34 6= Aν12,12. The constantsg2 andg3 are used in the same way. Therefore, at
most, three off-diagonal elements can be eliminated by this transformation.

Now, we carry out a second transformationG2 of the NR(L), such that the total
transformation will be given byG = G2G1. The matrixG2 is diagonal and the commutation
relations (2.9) of theNR(L) are left invariant for a transformation of the type

N −→ G2N,G2 =


g12

g23

g34

g12g23

g23g34

g12g23g34

 gik ∈ K \ {0}. (3.18)

The matricesAα are transformed asAα −→ G2A
αG−1

2 ∀α, where

Aα12,24 −→
(
g12

g24

)
Aα12,24 Aα23,14 −→

(
g23

g14

)
Aα23,14 Aα34,13 −→

(
g34

g13

)
Aα34,13.

(3.19)

Therefore, we can normalize up to three nonzero off-diagonal elements. ForK = C they can
be set equal to+1, for K = R we must in some cases allow the possibility of normalizing
to either+1, or to−1.

3.2.1. The Lie algebrasL(4, 1). The matrixA has the ‘canonical’ form given by (3.8).
Using the transformation (3.17), we can eliminate all off-diagonal elements, unless the
diagonal elements satisfy specific equations (e.g.A23,23+ A34,34− A12,12 = 0). At most,
two of their equalities can hold, otherwise the matrixA will be nilpotent. Thus, at most two
off-diagonal entries remain. They can be normalized to+1, with one exception, namely, if
we haveA12,24 6= 0, A34,13 6= 0 forK = R. Then, we can transform to one of the following:

A12,24 = +1 A34,13 = ±1

(A34,13 = −1 is not equivalent toA34,13 = +1).
The final result is that forK = C, 12 inequivalent types of such matrices exist, one of

them depending on two complex parameters, four depending on one complex parameter,
seven without parameters. ForK = R, altogether 13 types exist. Among them, one depends
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on two real parameters, four on one real parameter and eight without parameters. These
matrices are listed in table A1 in the appendix. The set of inequivalent matricesA in fact
represent all the possible Lie algebrasL(4, 1) of dimension seven. ForK = C the algebra
R1,13 is equivalent toK1,12.

3.2.2. The Lie algebrasL(4, 2). From the equations (3.11) and (3.15) and from the
previous results on the matricesAα, we can now determine the different types of Lie algebras
L(4, 2) (of dimension eight). ForK = C or R, 10 inequivalent types of such algebras exist,
one depending on two parameters, five on one parameter, four without parameters. These
Lie algebras are presented in table A2 in the appendix.

3.2.3. The Lie algebraL(4, 3). We can choose a basis for the set of matrices{A1, A2, A3},
by puttingAαj(j+1),j (j+1) = δαj (α, j = 1, 2, 3) in the general ‘canonical’ form. For the matrix
A1, we use the transformation (3.17) to annulA1

12,24, A
1
23,14 andA1

34,13. The commutativity
of the matricesAα imposes that the matricesA2 andA3 are also diagonal.

SinceA1
14,14, A

2
14,14, A

3
14,14 are different from zero, we can use equation (3.14) to put

[X1, X2] = [X2, X3] = 0 and [X3, X1] = σ 31N14. The relation (3.13) then imposesσ 31 = 0
and the commutation relations for the non-nilpotent elements become

[Xα,Xβ ] = 0 α, β = 1, 2, 3. (3.20)

Therefore, there exists only one Lie algebraL(4, 3) (K = C or R) and its dimension is
nine. This algebra is given in table A3 in the appendix.

The results of section 3.2 can be summed up as a theorem.

Theorem 1.Every solvable Lie algebraL(4, f ) with a six-dimensional triangular nilradical
T (4) can be transformed to a canonical basis{Xα,Nik}, α = 1, . . . , f,1 6 i < k 6 4, 1 6
f 6 3. The commutation relations in this basis are given by equation (2.9),(2.10) and
(2.11). The structure matricesAα all have the form (3.8).

For f = 1 the matrixA1 ≡ A has one of the forms given in table A1.
For f = 2 the matrices{A1, A2} have one of the forms given in table A2. The elements

{X1, X2} commute in all cases exceptK2 of table A2, whenσ is a nonzero arbitrary constant.
For f = 3 there is precisely one such algebra, given by the matrices{A1, A2, A3} of

table A3, with all elements{X1, X2, X3} commuting.
Every algebraL(4, f ) is isomorphic to precisely one algebra in Table Af , for

f = 1, 2, 3, respectively.

4. Solvable Lie algebrasL(n,f) for n > 4

4.1. General results

Lemma 1.The structure matricesAα = {Aαik,ab}, 1 6 i < k 6 n, 1 6 a < b 6 n have the
following properties.

(1) They are upper triangular.
(2) The only off-diagonal matrix elements that do not vanish identically and cannot be

annuled by a redefinition of the elementsXα are:

Aα12,2n Aαj(j+1),1n(26 j 6 n− 2) Aα(n−1)n,1(n−1). (4.1)
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(3) The diagonal elementsAαi(i+1),i(i+1), 1 6 i 6 n − 1 are free. The other diagonal
elements satisfy

Aαik,ik =
k−1∑
p=i

Aαp(p+1),p(p+1) k > i + 1. (4.2)

Proof. We shall use relations (2.14) that are consequences of the Jacobi relations for
{Xα,Nik, Nab}. Let us prove each statement in the theorem separately.

(1) All matrix elements below the diagonal vanish identically, i.e.

Aαik,ab = 0 for

{
k − i > b − a
k − i = b − a i > a.

(4.3)

We prove this statement by induction. In section 3, we have shown that lemma 1 is valid
for n = 4. Now let us assume it is valid forn = N − 1 > 4 and prove that it is then also
valid for n = N . By the induction assumption, we have

Aαlm,pq = 0 for

{
m− l > q − p
m− l = q − p l > p.

16 l < m 6 N − 1 16 p < q 6 N − 1.

(4.4)

Now considern = N . We are adding new entries in old rowsAαik,aN , new entries in old
columnsAαiN,ab and new rows intersecting new columnsAαiN,aN (here, lower case labels
vary from 1 toN − 1). We must show that all news entries also vanish.

Let us first take (2.14) fork = a = i+1, 16 i 6 N−2, i+26 b 6 N . The coefficient
of Npq for p > i + 2 provides the identities

Aαib,pq = 0. (4.5)

In particular we obtain

Aαib,pN = 0 b − i > N − p (4.6)

which means that we have no nonzero entries in new columns and old rows. Indeed, the
smallest possible value ofZ ≡ k − i + a −N for whichAαib,pN is not forced to be zero by
equation (4.5) is reached forb = i + 1, p = N − 1 or for p = i + 1, b = N − 2. In both
cases, the elementAαib,pN is above the diagonal.

Now consider equation (2.14) fork = a = N − 1, b = N, 1 6 i 6 N − 2. The
coefficients ofNpq for q 6 N − 2, Np(N−1) andNpN yield, in particular

AαiN,pq = 0 q 6 N − 2 (4.7)

AαiN,p(N−1) = 0 p > i (4.8)

AαiN,p(N−1) + Aα(N−1)N,pi = 0 (4.9)

Aαi(N−1),p(N−1) − AαiN,pN = 0 p 6= i. (4.10)

Note that equation (4.8) is obtained from equation (4.9). We haveAαi(N−1),p(N−1) = 0 for
p > i by the induction hypothesis. Hence, alsoAαiN,pN = 0 by equation (4.10). The
remaining elements in new rows below the diagonal areAαiN,(i−1)(N−1) andAα(N−1)N,(i−1)i
with 2 6 i 6 N − 1. Moreover, these elements are related by equation (4.9) for 26 i 6
N − 2. Let us now use relation (2.14) fork = i + 1, a = N − 1, b = N, 1 6 i 6 N − 3.
The coefficient ofNiq for q 6 N − 1 must vanish, henceAα(N−1)N,(i+1)q = 0 which can be
rewritten as

Aα(N−1)N,(i−1)i 36 i 6 N − 1. (4.11)
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The coefficient ofN13 for i = 2 must vanish, hence

Aα(N−1)N,12 = 0. (4.12)

Relation (4.9) then impliesAαiN,(i−1)(N−1) = 0(26 i 6 N − 2) and this completes the proof
of the statement thatAα is upper triangular.

(2) Let us now consider the matrix elementsAαik,ab above the diagonal. First of all, we
note the relations:

Aαib,pb − Aαik,pk = 0 p 6= i, 16 i < k < b 6 n (4.13)

Aαib,iq − Aαkb,kq = 0 q 6= b, 16 i < k < b 6 n (4.14)

Aαik,ia + Aαab,kb = 0 k 6= a, b 6= i, 16 i < k 6 n, 16 a < b 6 n. (4.15)

Relations (4.13) and (4.14) follow from (2.14) withk = a, (4.15) from (2.14) with
k 6= a, i 6= b.

Now let us use the transformation (2.17) to annul certain off-diagonal elements.
Specifically, we use the coefficientµαpq in the following manner:

µα1m : Aαm(m+1),1(m+1) −→ 0 26 m 6 n− 1

µαlm : Aα(l−1)l,(l−1)m −→ 0 26 l 6 n− 1, l + 16 m 6 n.
(4.16)

Note thatµα1n was not used and remains free for future use. Furthermore, combining (4.16)
with (4.13)–(4.15) we obtain many more zeros in the matrixAα.

Using relations (2.14) fork = i + 1 6= a, b 6= i, 16 i 6 n− 1, 16 a < b 6 n we find
the relations

Aαi(i+1),bq − Aαib,(i+1)q = 0

Aαab,(i+1)q = 0 i 6= a 6= i + 1, q 6= b 6= i
Aαi(i+1),pa = 0 a 6= i + 1, p 6= i
Aαi(i+1),bq = 0 q 6= i + 1, b 6= i.

(4.17)

We still need information on the elementsAαin,ab, A
α
ik,an. For this we consider equation (2.14)

for k = a = i + 1< b 6 n(16 i 6 n− 2, i + 26 b 6 n). We obtain

Aαib,pq = 0 i 6= p 6= i + 1, i + 1 6= q 6= b
Aαib,p(i+1) + Aα(i+1)b,pi = 0.

(4.18)

Together, relations (4.13)–(4.18) give us zeros everywhere exept for the elements (4.1).
These elements never enter into equation (2.14) exept for some identically respected trivial
triplets of the types{Xα,Nik, Nik}. Therefore, they are all free and this completes the proof
of the second affirmation in lemma 1.

(3) To obtain relations between the diagonal elements, take 16 i < k = a < b 6 n in
equation (2.14). The coefficient ofNib is

Aαib,ib − Aαik,ik − Aαkb,kb = 0. (4.19)

Choosinga = i + 1, b = i + 2 (16 i 6 n− 2), we obtain

Aαi(i+2),i(i+2) = Aαi(i+1),i(i+1) + Aα(i+1)(i+2),(i+1)(i+2) = 0. (4.20)

Now choosinga = i + 2, b = i + 3(16 i 6 n− 3), we obtain

Aαi(i+3),i(i+3) = Aαi(i+1),i(i+1) + Aα(i+1)(i+2),(i+1)(i+2) + Aα(i+2)(i+3),(i+2)(i+3) = 0. (4.21)

Proceeding recursively, we deduce relation (4.2) and this completes the proof of statement 3
of lemma 1. �
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Lemma 2.The maximal number of non-nilpotent elements is

fmax= n− 1. (4.22)

Proof. The proof is straightfoward since we have a maximum ofn − 1 parameters on the
diagonal and we impose the nilindependence between the matricesAα. �

Up to now we have considered the casef > 1 and this gave us lemma 1 describing
each of the matricesAα. Now, we shall consider the casesf > 2 andf > 3 and must also
satisfy the equations (2.15) and (2.16).

Let us first considerf > 2. From lemma 1, the possibly nonzero elements of the
commutators [Aα,Aβ ] are

[Aα,Aβ ]12,2n [Aα,Aβ ]j (j+1),1n (j = 2, . . . , n− 2) [Aα,Aβ ](n−1)n,1(n−1). (4.23)

Therefore, from (2.15), (4.23) and (2.11) we find that

[Aα,Aβ ] = 0 (4.24)

[Xα,Xβ ] = σαβN1n. (4.25)

Finally, we considerf > 3. From equation (4.25) and lemma 1, equation (2.16) reduces
to

σαβA
γ

1n,1n + σγαAβ1n,1n + σβγAα1n,1n = 0. (4.26)

Lemma 3.The commutation relations between the structure matrices and the non-nilpotent
elements can be transformed to a canonical form satisfying

[Aα,Aβ ] = 0 (4.27)

[Xα,Xβ ] =
{
σαβN1n for A1

1n,1n = · · · = Af1n,1n = 0

0 otherwise.
(4.28)

Proof. The commutation relations between the structure matrices have been proven already,
so we only consider the proof of equation (4.28). Using lemma 1 and transformation (2.19),
we modify the constantsσαβ to

σαβ −→ σαβ + µβ1nAα1n,1n − µα1nAβ1n,1n. (4.29)

Unless we haveA1
1n,1n = · · · = Af1n,1n = 0, this transformation can be used to cancel(f −1)

constantsσαβ . The remaining constants are forced to be zeros by equation (4.26) and this
completes the proof. �

4.2. Changes of basis in the nilradical

As in the casen = 4, we want to further simplify the structure matrices. For this, we
generalize ton > 4 the previous transformationsG1 andG2 which transform theNR(L),
but preserve its commutation relations. The transformationG1 is given by

N −→ G1N (G1)ab,pq = δab,pq + 1ab,pqga︸ ︷︷ ︸
no sum. over a

ga ∈ K (4.30)
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where
δab,pq ≡ δapδbq

1ab,pq ≡ δab,12δpq,2n +
( n−2∑
j=2

δab,j (j+1)

)
δpq,1n + δab,(n−1)nδpq,1(n−1).

(4.31)

Note that with this definition the elements ofAα satisfyAαab,pq = (δab,pq +1ab,pq)A
α
ab,pq .

The transformation preserves the commutation relations in theNR(L) and the matrices
Aα are transformed asAα −→ G1A

αG−1
1 ∀α. The diagonal elements are invariant and the

off-diagonal ones transform as

Aα12,2n −→ Aα12,2n + g1(A
α
2n,2n − Aα12,12)

Aαj(j+1),1n −→ Aαj(j+1),1n + gj (Aα1n,1n − Aαj(j+1),j (j+1)) j = 2, . . . , n− 2

Aα(n−1)n,1(n−1) −→ Aα(n−1)n,1(n−1) + gn−1(A
α
1(n−1),1(n−1) − Aα(n−1)n,(n−1)n)

(4.32)

with

Aαik,ik =
k−1∑
p=i

Aαp(p+1),p(p+1).

As in the casen = 4, the constantsgm(m = 1, . . . , n − 1) can be used to eliminate up to
(n− 1) off-diagonal elements of the matricesAα.

Lemma 4.The canonical form of a structure matrixAα has a nonzero off-diagonal element
Aαik,ab only if

A
β

ab,ab = Aβik,ik β = 1, . . . , f. (4.33)

This is true simultaneously for allβ.

Proof. The off-diagonal elementAαik,ab of a given matrixAα can be transformed to zero by
transformation (4.32), unless we haveAαab,ab = Aαik,ik. Now let us consider a second matrix
Aβ . The relation [Aα,Aβ ] = 0 among the structure matrices implies

Aαik,ab(A
β

ab,ab − Aβik,ik) = Aβik,ab(Aαab,ab − Aαik,ik), (4.34)

so if Aαik,ab 6= 0, we must haveAβab,ab = Aβik,ik ∀β. �

Now, consider the second transformationG2 given by

N −→ G2N (G2)ab,pq = δab,pqgab gab ∈ K \ {0}. (4.35)

This transformation preserves the commutation relations inNR(L) if

gab =
b−1∏
p=a

gp(p+1). (4.36)

The matricesAα are transformed asAα −→ G2A
αG−1

2 ∀α. The off-diagonal elements are
transformed as

Aα12,2n −→
(
g12

g2n

)
Aα12,2n

Aαj(j+1),1n −→
(
gj(j+1)

g1n

)
Aαj(j+1),1n j = 2, . . . , n− 2

Aα(n−1)n,1(n−1) −→
(
g(n−1)n

g1(n−1)

)
Aα(n−1)n,1(n−1).

(4.37)
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This transformation is used to normalize the nonzero off-diagonal elements to+1 forK = C
and to+1, or possibly−1 for K = R. Up to n − 1 elements can be normalized since we
haven− 1 independent entries inG2 (see equation (4.36)).

Note that before the normalization of the off-diagonal elements, we can normalize to
+1 the first nonzero entry on diagonal of each matrixAα (we choose the first nonzero one).

4.3. The Lie algebrasL(n, 1)

Let us consider one extreme case, namelyf = 1, for which we obtain the following lemma.

Lemma 5.The structure matrixA = {Aik,ab}1 6 i < k 6 n, 1 6 a < b 6 n of the Lie
algebraL(n, 1) has the following properties.

(1) The maximum number of off-diagonal elements isn− 2.
(2) The off-diagonal elements can all be normalized to+1 for K = C and to+1, or

−1 for K = R.

Proof. Let us prove each statement in the theorem separately.
(1) First, suppose that we haven− 1 nonzero off-diagonal elements. The off-diagonal

elements remain different from zero if all the terms in the brackets of (4.32) are zeros. This
gives us a system of linear equations for the diagonal elements such that

Aik,ik = 0 16 i < k 6 n. (4.38)

Hence, in this case the matrixA is nilpotent. If we have less or equal ton− 2 off-diagonal
elements, then we obtain at least one free element on the diagonal. In this case the matrix
A can (and must) be chosen to be non-nilpotent.

(2) Using transformation (4.37) we normalize allm 6 n − 2 nonzero off-diagonal
elements to+1. This imposes a system ofn−2 algebraic constraints on then−1 coefficients
gi(i+1), i = 1, . . . , n − 1. These equations always have a solution, but in some cases the
solution may be complex. ForK = C this is consistent. ForK = R we must modify
the initial normalized systems and include the possibility of normalizing to+1, or−1 the
off-diagonal elements. Thus an equivalence class overC may be split into several overR
(as usual, when restricting from the algebraicly closed fieldC to the nonclosed oneR). �

4.4. The Lie algebraL(n, n− 1)

Let us now consider the other extreme case, namelyf = n− 1.

Lemma 6.The Lie algebraL(n, n− 1) has the following properties.
(1) Only one such Lie algebra exists. The structure matricesAα are all diagonal and

can be chosen to satisfy

Aαik,ab = δik,ab
k−1∑
p=i

δαp 16 i < k 6 n, 16 α 6 n− 1. (4.39)

(2) The non-nilpotent elements always commute, i.e.

[Xα,Xβ ] = 0 16 α, β 6 n− 1. (4.40)
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Proof. Let us prove each statement in the theorem separately.
(1) From lemma 1, we see that by appropriate linear combinations of the elementsXα,

we can chooseAα to satisfy

Aαi(i+1),i(i+1) = δαi α, i = 1, . . . , n− 1. (4.41)

By using point (3) of lemma 1, we obtain (4.39). To complete the proof we have to show
that the off-diagonal elements are zero for all the structure matricesAα. First, we use
transformation (4.32) to annul the off-diagonal elements ofA1. Commutativity among the
structure matrices then implies that the off-diagonal elements of{A2, . . . , An−1} also vanish.

(2) The structure matrices given by (4.39) satisfyAα1n,1n = 1 ∀α. Hence, from
equation (4.28) we obtain equation (4.40). �

4.5. The main results

The results of section 4 constitute the principal result of this article and can be summed up
as a theorem.

Theorem 2.Every solvable Lie algebraL(n, f ) with a triangular nilradicalT (n) has the
dimensiond = f + 1

2n(n − 1) with 1 6 f 6 n − 1. It can be transformed to a canonical
basis{Xα,Nik}, α = 1, . . . , f , 16 i < k 6 n with commutation relations

[Nik,Nab] = δkaNib − δbiNak [Xα,Nik] = Aαik,pqNpq [Xα,Xβ ] = σαβN1n.

The canonical forms of the structure matricesAα and the constantsσαβ satisfy the following
conditions.

(1) The matricesAα are linearly nilindependent and have the form specified in lemma 1.
For f > 2 they all commute, i.e. [Aα,Aβ ] = 0.

(2) All constantsσαβ vanish unless we haveAγ1n,1n = 0 for γ = 1, . . . , f .
(3) The remaining off-diagonal elementsAαik,ab also vanish, unless the diagonal elements

satisfyAβik,ik = Aβab,ab for β = 1, . . . , f .
(4) Whenf reaches its maximal valuef = n− 1, then all matricesAα are diagonal as

in equation (4.39) and all elementsXα commute.
(5) For f = 1 the matrixA1 has at mostn − 2 off-diagonal elements that can be

normalized as in lemma 5.

5. Conclusions

In this article we have provided a description and classification of solvable Lie algebras
with triangular nilradicalsT (n). They are nilpotent Lie algebras that are in some sense, the
furthest removed from Abelian algebras. Indeed, the dimensions of the Lie algebras in their
central series are:

dimCS :

(
n(n− 1)

2
,
(n− 1)(n− 2)

2
,
(n− 2)(n− 3)

2
, . . . ,3, 1, 0

)
.

This complements earlier work [9, 10] on the classification of solvable Lie algebras
with Heisenberg nilradicals (with dimCS : (2n + 1, 1, 0)) and Abelian nilradicals (with
dimCS : (n, 0)).

The main results obtained in this paper are summed up in theorem 2 of section 4.
Applications of these algebras are postponed to a forthcoming article. They will concern

Lie theory and differential equations. The algebrasL(n, f ) can appear as symmetry algebras
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of nonlinear differential equations [11, 12]. They will also be used to construct certain
nonlinear ordinary differential equations with superposition formulae [13–15].
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Appendix. Lie algebras with a six-dimensional triangular nilradical T (4)

As an illustration of the results obtained above, we give a list of all algebrasL(4, 1), L(4, 2)
andL(4, 3).

We characterize the algebra by the structural matricesAα and by the constantsσαβ .
For each algebra, we introduce a nameKf,i(a, b) or Rf,i(a, b). The letterK indicates that
the algebra exists both forK = C andK = R; the algebraR is equivalent to some other
algebra in the list forK = C, but inequivalent forK = R. The first subscriptf indicates the
number of nonnilpotent elements and the second subscript simply enumerates the algebras.
The labels in the brackets indicate parameters in the matricesAα. Note that for each matrix
we normalize the first nonzero element on the diagonal to+1.

Table A.1. The Lie algebrasL(4, 1)

Name A Parameters

K1,1(a, b)


1

a

b

1+ a
a + b

1+ a + b

 a, b ∈ K

K1,2(a)


0

1
a

1
1+ a

1+ a

 a ∈ K

K1,3


0

0
1

0
1

1



K1,4(a)


1 1

a

1− a
1+ a

1
2

 a ∈ K
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Table A.1. (Continued)

Name A Parameters

K1,5


0 1

1
−1

1
0

0



K1,6(a)


1

a 1
−1

1+ a
−1+ a

a

 a ∈ K

K1,7


0

1 1
0

1
1

1



K1,8(a)


1

a

1+ a 1
1+ a

1+ 2a
2(1+ a)

 a ∈ K

K1,9


0

1
1 1

1
2

2



K1,10


1
−2 1

−1 1
−1

−3
−2



K1,11


1 1

2 1
−1

3
1

2



K1,12


1 1

0
1 1

1
1

2


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Table A.1. (Continued)

Name A Parameters

R1,13


1 1

0
1 −1

1
1

2



Table A.2. The Lie algebrasL(4, 2).

Name σ A1 A2 Parameters

K2,1(a, b) 0


1

0
a

1
a

1+ a




0

1
b

1
1+ b

1+ b

 a, b ∈ K

K2,2 σ


1

0
−1

1
−1

0




0

1
−1

1
0

0

 σ ∈ K \ {0}

K2,3(a) 0


1

a

0
1+ a

a

1+ a




0

0
1

0
1

1

 a ∈ K

K2,4 0


0

0
1

0
1

1




0

1
0

1
1

1



K2,5(a) 0


1

a

1− a
1+ a

1
2




0 1

1
−1

1
0

0

 a ∈ K

K2,6 0


0

1
−1

1
0

0




1 1

0
1

1
1

2


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Table A.2. (Continued)

Name σ A1 A2 Parameters

K2,7(a) 0


1

a

−1
1+ a

−1+ a
a




0

1 1
0

1
1

1

 a ∈ K

K2,8 0


0

1
0

1
1

1




1

0 1
−1

1
−1

0



K2,9(a) 0


1

a

1+ a
1+ a

1+ 2a
2(1+ a)




0

1
1 1

1
2

2

 a ∈ K

K2,10 0


0

1
1

1
2

2




1

0
1 1

1
1

2



Table A.3. The Lie algebraL(4, 3).

Name σ ′s A1 A2 A3

K3,1 0


1

0
0

1
0

1




0

1
0

1
1

1




0

0
1

0
1

1


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