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Abstract. Al finite-dimensional indecomposable solvable Lie algebids, f), having the
triangular algebral'(n) as their nilradical, are constructed. The number of non-nilpotent
elementsf in L(n, f) satisfies 1< f < n — 1 and the dimension of the Lie algebra is
dmL@n, f)=f+ %n(n -1).

Résune. Toutes les algbres de Lie &solubles et inecomposables de dimension finie, qui
ont un nilradical triangulairel’ (n), sont construites. Le nombre&®ments non nilpotentg
dansL(n, f) satisfait 1< f < n — 1 et la dimension de I'akpre de Lie est dimi(n, f) =
f+ %n(n -1).

1. Introduction

The purpose of this paper is to construct all indecomposable solvable Lie algebras that have
‘triangular algebrasT (n) of dimension%n(n — 1) (3 < n < o0) as their nilradicals. By
triangular algebrd’ (n), we mean the nilpotent Lie algebra isomorphic to the Lie algebra
of strictly upper triangulan x n matrices. The motivation for such a study is manyfold.
From a mathematical point of view, this investigation is part of the classification of all finite
dimensional Lie algebras. The Levi theorem [1, 2] tells us that every finite-dimensional
Lie algebraL is a semidirect sum of a semisimple Lie algelSrand a solvable ideal (the
radical R):
L=S>R [S.81=S [S,RICR [R, R] C R. (1.2)

Semisimple algebras over fields of complex or real numbers have been classified by Cartan
[3]. However, the classification of solvable Lie algebras is only complete for low dimensions
(dimL < 6) [4-7]. From Maltsev [8] we know some important results on the structure of
Lie algebras, but not on solvable Lie algebras with a given nilradical. More recent articles
provided a classification of all Lie algebras with Heisenberg or Abelian nilradicals [9, 10].

As far as physical applications are concerned, we note that solvable Lie algebras often
occur as Lie algebras of symmetry groups of differential equations [11]. Group invariant
solutions can be obtained by symmetry reduction, using the subalgebras of the symmetry
algebra [12]. In this procedure an important step is to identify the symmetry algebra and
its subalgebras as abstract Lie algebras. A detailed identification presupposes the existence
of a classification of Lie algebras into isomorphism classes.

In section 2, we formulate the problem and the general strategy that we will adopt. In
section 3, we illustrate the procedure for the particular case 4. Guided by this last
section, in section 4 we present the general classification for arbitrary
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2. Formulation of the problem

2.1. General concepts

Let us first recall some definitions and known results on solvable Lie algebras. A Lie
algebralL is solvable, if its derived serieB S terminates, i.e.
DS={Lo=L,Li=[L,L],..., Ly =[Li_1, Ly_1] =0} (2.2)
for somek > 0.
A Lie algebraL is nilpotent, if its central serie€'S also terminates, i.e.
CS = {L(o) = L, L(]_) = [L, L(o)], ey L(k) = [L, L(k_]_)] == 0} (22)
for somek > 0.

The nilradicalN R(L) of a solvable Lie algebrd is the maximal nilpotent ideal of.
This nilradical N R(L) is unique and its dimension satisfies [5]

dimNR(L) > ;dimL. (2.3)

Any solvable Lie algebrd can be written as the algebraic sum of the nilradi¢& (L)
and a complementary linear spaEe

L=F+NR(L). (2.4)

A Lie algebraL is decomposable if it can, by a change of basis, be transformed into a
direct sum of two (or more) subalgebras

L=L1®L, [L1, L] =0. (2.5)
An elementN of a Lie algebraL is nilpotent inL if
[...[[X,N],N]...N]=0 VX € L. (2.6)

A set of element$X“} of L is linearly nilindependent if no nontrivial linear combination
of them is nilpotent.

A set of matrice§A*},—1., is linearly nilindependent if no nontrivial linear combination
of them is a nilpotent matrix, i.e.

k
(Z c,-A’) =0 (2.7)
i=1

for somek € Z*, impliesc; = OVi.

2.2. Basic structure of the Lie algebra and general strategy

Let us consider the finite triangular algeldf&n) with n > 3 over the field of complex, or
real numbersIi = C or R). A basis for this algebra is

{NielL<i <k <n}

(Nidap = 8iaby~ dimT(n) = n(n —1) =r.
This basis can be represented by the standard basis of the strictly upper trianguiar
matrices. The commutation relations are

[Nik, Nav] = xaNip — 8pi Nak- (2.9)

We wish to extend this algebra to an indecomposable solvable Lie alggbrg’) of
dimension%n(n — 1) + f having T (n) as its nilradical. In other words, we wish to agd
further linearly nilindependent elements T@n). Let us denote theriX?, ..., X/}.

(2.8)
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The derived algebral], L] of a solvable Lie algebrd. is contained in its nilradical [2].
The commutation relations will have the form

[Xav Nik] = A?k‘qupq (210)
[Xav Xﬂ] = U;(IﬂNpq (211)
1<, B f<r Al pg> a[‘;‘feK.

(Here and in the rest of the paper, we use the Einstein summation convention over repeated
indices, unless stated otherwise). The commutation relations (2.10) can be rewritten as

[X*, N] = AN
N = (N12No3. .. Noy—1nN13. .. Ny_oyn - .. N1o) T (2.12)
AY € K" N e erll

(The superscript T indicates transposition.) Heveis a ‘column vector’ of basis elements
of NR(L) ordered by first taking the elemend 1, next to the diagonal, thew; o
(removed two steps from the diagonal) etc. We shall call the matritesstructure
matrices’.

A classification of the Lie algebras(n, f) thus amounts to a classification of the
structure matrices\” and the constaniss:. The Jacobi identities have to be respected by
the following three types of triplets (those with thraés are satisfied automatically)

(X N, N} f 21 (X% XP Nyd f > (X, XP, X"} f >3 (2.13)
1<i<k<n 1<a<b<n gaﬂy f. '
Which give us respectively the three equations
5kﬂAlb pq SblAZk,quPq + A?k,quaq - A?k,paN[’b + Agb,piN[?k - Agb,quiq =0
(2.14)
[Aa Aﬂ]ik,qupq = U/:tzﬂNiq - Ua'ﬁNpk (215)
(1 o ﬁ o
oA Ol AL ol AS =0 (2.16)

The equation (2.14) will give restrictions on the form of the structure matrices
We will transform these matrices into a ‘canonical’ form by transformations that leave the
commutation relations (2.9) of thE R(L) invariant, but transform the matrices’ and the
constant&,,q These transformations will be

(i) redefinition of all the non-nilpotent elements:

X — X4+ u* N © K
’ Prale B (2.17)
= Alar — Aikab T Skblgi — Sialbyp
(ii) change of basis iNVR(L):
N — GN G € GL(r,K)
(2.18)

=AY — GA°G!

(i) linear combinations of the elemen* and hence of the matrice$”.
Note that the elemen¥y, does not contribute in the transformation (2.17) since it commutes
with all the elements in th&/ R(L). Thuspug, is not used in (2.17). Also, the matri& has
to be suitably restricted in order to preserve the commutation relations (2.9) ofRi&).
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From the equations (2.15) and (2.16) we obtain some relations between the matrices
and the constants,?f. By exploiting the fact thai{, is not utilized in (2.17), forf > 2

we will make an additional transformation to simplify the constarf{$, i.e.

XY — X 4+ uf, N, ng, €K (2.19)
B B )
:> U/?‘IIS - G/?t(/]g + MlnAi[l’l,Pq - I’L?.tllA]_n,pq‘

(Where A —> A%, i.e. the structure matrices stay the same.) It will therefore be possible
to simplify some constantzs,‘j‘g3 associated with the matrices”, A?.

3. llustration of the procedure for low dimensions

3.1. The case = 3

In this case, the Lie algebr@(3) is isomorphic to the Heisenberg algebix1). As
mentioned previously, solvable Lie algebras with Heisenberg nilradicals were classified
earlier [9]. We will therefore consider > 3 from this point on. The dimensiom = 3 is

the only case for which there is an isomorphism between the triangular and the Heisenberg
Lie algebras.

3.2. The case =4
In this particular case, we have
A% e K¥® N = (N12N23N34N13N24N14) " (31

Let us first consider relations (2.14). We can separate them into two classes of equations.
The first arises from the tripletsX*, N, N}, 1 <i < k = a < b < 4, which give

AO(

ib.pgNpa T Al g Nkg — Ak pkNpp + Al pi Npk — Ajp kg Nig =0

(no summation over k) 3.2)

The second class comes from the tripl@&*, Niy, Ny}, 1 < i <k <4,1<a <b<
4,k # a(b # i) and in this case equation (2.14) becomes

Al pgNag — Al paNpb + Ay i Npk — Agpy kg Nig = 0. (3.3)

We begin by considering equation (3.3). From each possible triplet associated with
this class of equation, we use the linear independence ofNhg to determine relations
between the elements d@f*. For example, from the tripl€tX*, N1,, Naa}, we obtain

Afp13+ A3404 =0 Afp 3= A3453=0. (3.4)

When we apply equation (3.3) to the 11 triplets associated to this equation, we find

* 0 Afs Alis * *

0 * 0 * * *

o _ | A3412 O * * —(Af219) *
A=1797 0 o £ (e (3:5)

0 0 0 (A3412) * *

0 0 0 0 0 *

Wherex denote arbitrary elements unrelated to others in the matAées
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In the same manner, we apply equation (3.2) to the four triplets associated with this
class of equation. This gives us some further relations between the matrix element$ and
becomes

A1z 0 0 Afr13 * *
A%323 0 A%313 A%324 *
AY % — (A%, ) %
A% — 3434 . 1213 Y . (3.6
Afp1ot+ AZsos 0 (A%324) (3.6)
AZ323+ A3sza (A%313)

Afp 1o+ Adz3 1 AZgas
To simplify the form of the matrix (3.6), we carry out the transformation (2.17) for the
f matricesA®. Given the liberty of the five constants;, for eacha independently (the
sixth one,u.{, does not contribute), we can arrange to have

A(fz.la = Aizm = Ag3,13 = A§3,24 = A"3‘4,14 =0. (3-7)
Therefore, each matriXx®* can be transformed into
Af12 0 0 0 Af24 0
A%303 0 0 0 AS314
AY — Ag4,34 A§4,13 0 0
A13,13 0 0
A5y 04 0 (3.8)
A(])f4.14
k—1

A?k»ik = ZAz(pH),p(pH)‘
p=i
These matrices must be linearly nilindependent otherwiséVtR¢L) would be larger than
T(4). In particular, this implies that we cannot simultaneously ha{e,, = A%;,; =
A3434 = 0. Also, since we have three parameters on the diagonal, the nilindependence
between theA* implies that we have at most three non-nilpotent elements, i.e.

1< f<3. (3.9)

Let us now look at the casegs > 2. The structure matriceg”* have the ‘canonical’
form given by (3.8), therefore the possibly nonzero elements of the commutatara /]
are

[A%, APl1224 [A%, AP]2314 [A%, AP]a41s. (3.10)
By the linear independence of th&/,} and from (2.15), (3.10) and (2.11) we find that
[A%, AP1=0 (3.11)
[X%, XP] = 0% Nya. (3.12)

Finally, we consider the casg = 3. In view of the ‘canonical’ form of the structure
matricesA* and by relation (3.12), equation (2.16) becomes

02A3, 14+ 0% AL 14+ 0%A%, 1, = 0. (3.13)
Moreover, the transformation (2.19) will modify the constamté into
o — o + MT4A%4,14 - M%4Af4,14~ (3.14)
Hence, by using (3.14) fof = 2 and (3.14), (3.13) foif = 3, we obtain
o Nia for Afjpu=---= A{4.14 =0

: (3.15)
0 otherwise.

[x, X1 = i
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To further simplify the structure matrix, let us perform a transformation of the type
(2.18), i.e.

1 00

10

1

0
0
N — GiN Gy = gf (3.16)

rooo®
Pooo% o

This transformation leaves the commutation relations (2.9) of NtR(L) invariant, but
transforms the matriced® — GlAO‘GIl Vo, i.e.

Alpoa —> Alp2a+ 81(A%303+ A3430 — AT212)
AZ314 —> AZ314+ 82(AT5 15+ A3434) (3.17)
3413 — A3413 1 83(AT210 + A%303 — A3434)-

Thus usingg; we can eliminated}, ,,(1 < v < f) of the specific matrixA”, provided that
Ajz03+ Azgz4 # Al21o- The constantg, andgs are used in the same way. Therefore, at
most, three off-diagonal elements can be eliminated by this transformation.

Now, we carry out a second transformatiafhy of the NR(L), such that the total
transformation will be given by = G,G1. The matrixG, is diagonal and the commutation
relations (2.9) of theVR(L) are left invariant for a transformation of the type

812
823
N — GZN, Gz = 834 ik € K \ {0} (318)
812823
823834
812823834

The matricesA® are transformed ag® — G,A“G,* Va, where

812 823 834
A(itz,24 - <g24> Alr24 Ags,m - <g14> Agam A§4,13 - <g13> A§4,13-

(3.19)

Therefore, we can normalize up to three nonzero off-diagonal element& £of they can
be set equal te-1, for K = R we must in some cases allow the possibility of normalizing
to either+1, or to—1.

3.2.1. The Lie algebra#.(4,1). The matrix A has the ‘canonical’ form given by (3.8).
Using the transformation (3.17), we can eliminate all off-diagonal elements, unless the
diagonal elements satisfy specific equations (A.23 + Aza34 — A1212 = 0). At most,

two of their equalities can hold, otherwise the matixvill be nilpotent. Thus, at most two
off-diagonal entries remain. They can be normalized-fig with one exception, namely, if

we haveAi,24 # 0, Azg13 # 0 for K = R. Then, we can transform to one of the following:

Apoa=+1 Azg13==£1

(Azs13 = —1 is not equivalent toA3413 = +1).

The final result is that foK = C, 12 inequivalent types of such matrices exist, one of
them depending on two complex parameters, four depending on one complex parameter,
seven without parameters. FHer= R, altogether 13 types exist. Among them, one depends
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on two real parameters, four on one real parameter and eight without parameters. These
matrices are listed in table Al in the appendix. The set of inequivalent matticedact
represent all the possible Lie algebragl, 1) of dimension seven. FAK = C the algebra

R1.13 is equivalent toK 1o

3.2.2. The Lie algebrad.(4,2). From the equations (3.11) and (3.15) and from the
previous results on the matricd$, we can now determine the different types of Lie algebras
L(4, 2) (of dimension eight). FOK = C or R, 10 inequivalent types of such algebras exist,

one depending on two parameters, five on one parameter, four without parameters. These
Lie algebras are presented in table A2 in the appendix.

3.2.3. The Lie algebrd.(4, 3). We can choose a basis for the set of matrices A2, A3},
by puttingA¥ ;1) ;(j+1) = dej(a, j = 1,2, 3) in the general ‘canonical’ form. For the matrix
Al, we use the transformation (3.17) to ana}, ,,. A3, and A3, ;5. The commutativity
of the matricesA® imposes that the matrices? and A% are also diagonal.

Since Al 14 AL, 14 AY, 14 are different from zero, we can use equation (3.14) to put
[X1, X?] =[X?, X3] = 0 and [x3, X'] = 63 N14. The relation (3.13) then imposes! = 0
and the commutation relations for the non-nilpotent elements become

[X*, XP1=0 a, =123 (3.20)

Therefore, there exists only one Lie algelitéd, 3) (K = C or R) and its dimension is
nine. This algebra is given in table A3 in the appendix.
The results of section 3.2 can be summed up as a theorem.

Theorem 1 Every solvable Lie algebra (4, f) with a six-dimensional triangular nilradical
T (4) can be transformed to a canonical bast&, N}, a=1,..., f,1<i <k <4,1<
f < 3. The commutation relations in this basis are given by equation (2.9),(2.10) and
(2.11). The structure matrice$” all have the form (3.8).

For f = 1 the matrixA® = A has one of the forms given in table Al.

For f = 2 the matricegA*, A%} have one of the forms given in table A2. The elements
{X1, X?} commute in all cases excefib of table A2, whenv is a nonzero arbitrary constant.

For f = 3 there is precisely one such algebra, given by the matfigésA?, A3} of
table A3, with all element$X*, X2, X3} commuting.

Every algebraL(4, f) is isomorphic to precisely one algebra in Tablef Afor
f =12, 3, respectively.

4. Solvable Lie algebrasL(n, f) for n > 4

4.1. General results

Lemma 1.The structure matriced® = {Afiwh1l<i<k<nl<a<b<n have the
following properties.

(1) They are upper triangular.

(2) The only off-diagonal matrix elements that do not vanish identically and cannot be
annuled by a redefinition of the elemerié are:

A[fz,zn A?(Hl),ln(z <js<n-2) A?nfl)n,l(nfl)' (4.1)
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(3) The diagonal elementg?
elements satisfy

lisn.uarye L <@ < n—1are free. The other diagonal
k—1
A=Y A% ppi) k>i+1 (4.2)

p=i

Proof. We shall use relations (2.14) that are consequences of the Jacobi relations for
{X*, Nir, Nyp}. Let us prove each statement in the theorem separately.
(1) All matnx elements below the diagonal vanish identically, i.e.
A% =0 for | K TITba (4.3)

= or .

tk.ab k—i=b—a i>a.
We prove this statement by induction. In section 3, we have shown that lemma 1 is valid
for n = 4. Now let us assume it is valid far = N — 1 > 4 and prove that it is then also
valid for n = N. By the induction assumption, we have

Al =0 for 1" =r
pa m—Il=qg—p [ > p. (4.4)
1<l<m<N-1 1<p<g<N-1

Now considerm = N. We are adding new entries in old rows;, ., new entries in old
columns A%, ,, and new rows intersecting new columns, . (here, lower case labels
vary from 1 toN — 1). We must show that all news entries also vanish.

Let us first take (2.14)fok =a =i+1,1<i < N—2,i+2 < b < N. The coefficient
of N,, for p > i 4+ 2 provides the identities

A%, = 0. (4.5)
In particular we obtain
A% v =0 b—i>N-—p (4.6)

which means that we have no nonzero entries in new columns and old rows. Indeed, the
smallest possible value &f =k —i +a — N for which A7, , is not forced to be zero by
equation (4.5) isreached for=i+1,p=N—1orforp=i+1,b =N — 2. In both

cases, the element;, , is above the diagonal.

Now consider equation (2.14) fdr = a = N —1,b = N,1 < — 2. The
coefficients ofN,, forg < N — 2, N,w—1 and N,y yield, in partlcular

Afy pg =0 g<N-=-2 4.7)

A?N,p(Nfl) =0 p=i (4.8)

Ay pv-1) + Aly_ynpi =0 (4.9)

Afv—1y pv-1) — Ainpn =0 p#i (4.10)

Note that equation (4.8) is obtained from equation (4.9). We h#yg ,, v, = 0 for
p > i by the induction hypothesis. Hence, alad, =0 by equatlon (4 10). The
remaining elements in new rows below the d|agonal AR 1y wv_1 ANd Aly_pn o1y
with 2 <i < N — 1. Moreover, these elements are related by equation (4.9) for X
N — 2. Let us now use relation (2.14) féar=i +1,a=N-1,b=N,1<i < N -3.
The coefficient ofN;, for ¢ < N — 1 must vanish, hencafy_, y 1, = 0 which can be
rewritten as

A% pnvg-ni  3<i<N-L (4.11)
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The coefficient ofN13 for i = 2 must vanish, hence
Alv-yn12=0. (4.12)

Relation (4.9) then impl_ieﬂ;?‘N.(i_l)(_N_l) =02 < i < N —2) and this completes the proof
of the statement thad® is upper triangular.

(2) Let us now consider the matrix element§ ,, above the diagonal. First of all, we
note the relations:

Al o — Al =0 p#i, 1<i<k<b<n (4.13)
Al iy — Atpig =0 qg#b, 1<i<k<b<n (4.14)
Affia T AGpap =0 k#a, b#i, 1<i<k<n, 1<a<b<n. (4.15)

Relations (4.13) and (4.14) follow from (2.14) with = a, (4.15) from (2.14) with
k+a,i+#b.
Now let us use the transformation (2.17) to annul certain off-diagonal elements.
Specifically, we use the coefficiept) in the following manner:
Min At n.amen — 0 2<m<n-1 (4.16)
/'L?m:A?l—l)l,(l—l)m_)o 2<i<n=-11+1<m<n.
Note thatu{, was not used and remains free for future use. Furthermore, combining (4.16)
with (4.13)—(4.15) we obtain many more zeros in the ma#ix
Using relations (2.14) fok =i +1#a,b#£i,1<i<n—-1,1<a < b <n we find
the relations

o o —
Ai(i+l),bq - Aib,(i+l)q =0

A i+1g =0 iFa#i+1 g#b#i 4.17)
Afit1,pa =0 ati+1 p#i

Afii1ypg =0 g#i+1 b#i.
We still need information on the elememt§, ., A7, For this we consider equation (2.14)

ik,an*
fork=a=i+1<b<nl<i<n—-2i+2<b<n). We obtain
A7 =0 iZp#i+1 i+1#qg#b
bra (4.18)

A?b.p(wl) + A((¥i+1)b,pi =0.
Together, relations (4.13)—(4.18) give us zeros everywhere exept for the elements (4.1).
These elements never enter into equation (2.14) exept for some identically respected trivial
triplets of the type§X®, N;i, Nix}. Therefore, they are all free and this completes the proof
of the second affirmation in lemma 1.
(3) To obtain relations between the diagonal elements, take k k =a <b <n in
equation (2.14). The coefficient @f;, is

A?b,ib - A?k,ik - Azb,kb =0. (4.19)
Choosinga =i+ 1,b=i+2 (1<i <n-—2), we obtain
Ali+2.i6+2 = Alirn.ii+n T A+ = O (4.20)

Now choosinga =i +2,b =i +3(1 <i < n — 3), we obtain

Afi43,i0+3 = Ali10.i6+) T Altni+2.0+0042 T AG+26+9,.0+20+3 = 0- (4.21)
Proceeding recursively, we deduce relation (4.2) and this completes the proof of statement 3
of lemma 1. O
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Lemma 2.The maximal number of non-nilpotent elements is

Jmax=n—1. (4.22)

Proof. The proof is straightfoward since we have a maximunx ef 1 parameters on the
diagonal and we impose the nilindependence between the matices O

Up to now we have considered the cage> 1 and this gave us lemma 1 describing
each of the matriced®. Now, we shall consider the cas¢s> 2 and f > 3 and must also
satisfy the equations (2.15) and (2.16).

Let us first considerf > 2. From lemma 1, the possibly nonzero elements of the
commutators A%, A?] are

[A%, AP]122 [A% APliGipm G =2,...,n—2) [A% APlp—tmag-y.  (4.23)
Therefore, from (2.15), (4.23) and (2.11) we find that
[A%, AP1=0 (4.24)
(X%, XP] = 0 Ny,. (4.25)

Finally, we considerf > 3. From equation (4.25) and lemma 1, equation (2.16) reduces
to
oPAY L+ a7 AL L+ 0P AY, =0 (4.26)
Lemma 3.The commutation relations between the structure matrices and the non-nilpotent
elements can be transformed to a canonical form satisfying
[A%, AP1=0 (4.27)

{o"‘"Nl,, for A} ., =---=Af ,,=0

[X*, XP] = (4.28)

otherwise.

Proof. The commutation relations between the structure matrices have been proven already,
so we only consider the proof of equation (4.28). Using lemma 1 and transformation (2.19),
we modify the constants® to

o — o 4 uf AY, 1, — ng, AL L (4.29)

Unless we havet}, |, = - = A{n_ln = 0, this transformation can be used to carge-1)

constantsr*#. The remaining constants are forced to be zeros by equation (4.26) and this
completes the proof. O

4.2. Changes of basis in the nilradical

As in the casen = 4, we want to further simplify the structure matrices. For this, we
generalize tor > 4 the previous transformations; and G, which transform theV R(L),
but preserve its commutation relations. The transformatierns given by

N — GlN (Gl)ab,pq = aab,pq + Aab,pqga 8a € K (430)
———

no sum over a
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where

(Sab,pq = Sap(sbq

n=2 (4.31)
Aab,pq = (Sab,128pq,2n + Z 8ab,j(j+l) apq,ln + aab,(nfl)n5pq,1(nfl)-

j=2
Note that with this definition the elements af satisfy A7, , = Bub,pg + Dav,pg) Ay py-

The transformation preserves the commutation relations inMR&Z) and the matrices
A“ are transformed ad® — G1A4*G;'Va. The diagonal elements are invariant and the
off-diagonal ones transform as

Ao, —> Ao, + 81(A3, 5, — ATr15)

Al i — AfGrn T & (AL 1 — AfGin.G+) j=2....n-2 (4.32)
Al(xnfl)n,l(nfl) - AL(xnfl)n,l(n*l) + g”_l(A%(ﬂfl),l('lfl) - AL(X"*D"*(”*]-)")
with
k-1
o — o
Al = D A%t ppr-
p=i

As in the case: = 4, the constantg,,(m = 1,...,n — 1) can be used to eliminate up to
(n — 1) off-diagonal elements of the matricds$ .

Lemma 4.The canonical form of a structure matri®¢ has a nonzero off-diagonal element
Af, p only if

Agb,ab = Afk,ik ﬁ = 17 s f (433)
This is true simultaneously for afl.

Proof. The off-diagonal elememy, , of a given matrixA* can be transformed to zero by
transformation (4.32), unless we hax§, ,, = A7 ;. Now let us consider a second matrix
AP, The relation A%, A#] = 0 among the structure matrices implies

AfearAlpap = Aleir) = Aleoan A0 = Afei)s (4.34)
so if Af ,, # 0, we must haveéfb’ab = Afk’ik vB. O

Now, consider the second transformatiGa given by
N — GZN (GZ)ab,pq = aab,pqgab 8ab € K\ {0} (435)
This transformation preserves the commutation relations R(L) if

b—1
gar = [ | &ppr0- (4.36)

p=a

The matricesA* are transformed ad® — GZA“GZTlVa. The off-diagonal elements are
transformed as

812
Alpz — <g2n> A%ZZn

a 8iG+D o .
Al — < ]glln )Aj(j+1),1n j=2,...,n—2 (4.37)

8(n—n
A((Xn—l)n,l(n—l) (81(n1)> A((Xn—l)n,l(n—l)'
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This transformation is used to normalize the nonzero off-diagonal elemets for K = C
and to+1, or possibly—1 for K = R. Up ton — 1 elements can be normalized since we
havern — 1 independent entries i@, (see equation (4.36)).

Note that before the normalization of the off-diagonal elements, we can normalize to
+1 the first nonzero entry on diagonal of each ma#fx(we choose the first nonzero one).

4.3. The Lie algebrag.(n, 1)
Let us consider one extreme case, namghe 1, for which we obtain the following lemma.

Lemma 5.The structure matrixA = {Aixwp}l < i < k < n,1 < a < b < n of the Lie
algebraL(n, 1) has the following properties.

(1) The maximum number of off-diagonal elementsiis 2.

(2) The off-diagonal elements can all be normalized+b for K = C and to+1, or
—1forK=R.

Proof. Let us prove each statement in the theorem separately.

(1) First, suppose that we hawe— 1 nonzero off-diagonal elements. The off-diagonal
elements remain different from zero if all the terms in the brackets of (4.32) are zeros. This
gives us a system of linear equations for the diagonal elements such that

At =0 1<i<k<n. (4.38)

Hence, in this case the matriis nilpotent. If we have less or equal to- 2 off-diagonal
elements, then we obtain at least one free element on the diagonal. In this case the matrix
A can (and must) be chosen to be non-nilpotent.

(2) Using transformation (4.37) we normalize all < n — 2 nonzero off-diagonal
elements tot-1. This imposes a system of-2 algebraic constraints on the-1 coefficients
gii+1.1 = 1,...,n — 1. These equations always have a solution, but in some cases the
solution may be complex. FdK = C this is consistent. FOK = R we must modify
the initial normalized systems and include the possibility of normalizing-1o or —1 the
off-diagonal elements. Thus an equivalence class @eray be split into several ovéR
(as usual, when restricting from the algebraicly closed f@ltb the nonclosed oni). O

4.4. The Lie algebrd.(n,n — 1)
Let us now consider the other extreme case, nanfelyn — 1.

Lemma 6.The Lie algebral(n, n — 1) has the following properties.
(1) Only one such Lie algebra exists. The structure matric€sare all diagonal and
can be chosen to satisfy

k=1
A%y = Sikab Y ap 1<i<k<n 1<a<n-1 (4.39)
p=i

(2) The non-nilpotent elements always commute, i.e.

[X*, XP1=0 1<a,fp<n—1 (4.40)
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Proof. Let us prove each statement in the theorem separately.
(1) From lemma 1, we see that by appropriate linear combinations of the eleifgnts
we can choosel® to satisfy

Aliv1.i+1) = Oai a,i=1...,n—-1 (4.41)

By using point (3) of lemma 1, we obtain (4.39). To complete the proof we have to show
that the off-diagonal elements are zero for all the structure matices First, we use
transformation (4.32) to annul the off-diagonal elementsibf Commutativity among the
structure matrices then implies that the off-diagonal elementd &f. .., A”~1} also vanish.

(2) The structure matrices given by (4.39) satisf{, ;,, = 1 Va. Hence, from
equation (4.28) we obtain equation (4.40). O

4.5. The main results

The results of section 4 constitute the principal result of this article and can be summed up
as a theorem.

Theorem 2 Every solvable Lie algebrd (n, f) with a triangular nilradical’ (n) has the
dimensiond = f + %n(n —1) with 1 < f < n— 1. It can be transformed to a canonical
basis{X*, Ny}, a=1,..., f, 1 <i < k < n with commutation relations

[Niks Nap] = 8kaNip — S8pi Nak [X, Niel = A% e Npg [X*, XP] = 0“ Ny,.

The canonical forms of the structure matric&and the constanis* satisfy the following
conditions.

(1) The matricesA* are linearly nilindependent and have the form specified in lemma 1.
For f > 2 they all commute, i.e.4%, A?] = 0.

(2) All constantso®® vanish unless we have’, ,, =0fory =1,..., f.

(3) The remaining off-diagonal elemems, , also vanish, unless the diagonal elements
satisfy Al , = AP, , for p=1,..., f.

(4) When 1 reaches its maximal valug = n — 1, then all matrice\* are diagonal as
in equation (4.39) and all elemenk&' commute.

(5) For f = 1 the matrixA® has at most: — 2 off-diagonal elements that can be
normalized as in lemma 5.

5. Conclusions

In this article we have provided a description and classification of solvable Lie algebras
with triangular nilradicalsI’ (n). They are nilpotent Lie algebras that are in some sense, the
furthest removed from Abelian algebras. Indeed, the dimensions of the Lie algebras in their
central series are:

dimCsS : (n(n—l) (n=Dn =2 (n—2)(n—3)’.“’3’1’0>.

2 2 ’ 2

This complements earlier work [9, 10] on the classification of solvable Lie algebras
with Heisenberg nilradicals (with di€@iS : (22 + 1, 1,0)) and Abelian nilradicals (with
dimcCs : (n, 0)).

The main results obtained in this paper are summed up in theorem 2 of section 4.

Applications of these algebras are postponed to a forthcoming article. They will concern
Lie theory and differential equations. The algebkds, f) can appear as symmetry algebras
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of nonlinear differential equations [11, 12]. They will also be used to construct certain
nonlinear ordinary differential equations with superposition formulae [13-15].
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Appendix. Lie algebras with a six-dimensional triangular nilradical T'(4)

As an illustration of the results obtained above, we give a list of all algabtésl), L(4, 2)
andL(4, 3).

We characterize the algebra by the structural matri¢esand by the constants®.
For each algebra, we introduce a nafig; (a, b) or Ry, (a, b). The letterK indicates that
the algebra exists both fd&& = C andK = R; the algebrar is equivalent to some other
algebra in the list folK = C, but inequivalent foiK = R. The first subscrip¥ indicates the
number of nonnilpotent elements and the second subscript simply enumerates the algebras.
The labels in the brackets indicate parameters in the matitedNote that for each matrix
we normalize the first nonzero element on the diagonajio

Table A.1. The Lie algebrad.(4, 1)

Name A Parameters
1
a
Ki1(a,b) b 14a a,beK
a+b
1+a+b
0
1
Ki2(a) “ 1 aeKk
1+a
14+a
0
0
1
Ki3 0
1
1
1 1
a
1,
K1 4(a) a 14a aeck
1
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Table A.1. (Continued)

Name A Parameters
0 1
1
-1
Kis 1
0
0
1
a 1
-1
Ki6(a) 14a aekK
—1+a
a
0
1 1
0
K7 1
1
1
1
a
14+a 1
Ki.8(a) 1+a aeck
1+ 2a
2(1+a)
0
1
11
Kig 1
2
2
1
-2 1
-1 1
K110 1
-3
-2
1 1
2 1
-1
K111 3
1
2
1 1
0
11
K112 1
1
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Table A.1. (Continued)
Name A Parameters
1 1
0
1 -1
Ri13 1
1
2
Table A.2. The Lie algebrad.(4, 2).
Name Al A? Parameters
1 0
0 1
a b
K> 1(a, b) 1 a,beK
a 1+b
1+a 1+b
1 0
0 1
-1 -1
K> 1 o e K\ {0}
-1 0
0
1 0
a 0
0 1
ngg(a) 1 +a a e K
a 1
1+a 1
0 0
0 1
1 0
Koa 0
1 1
1 1
1 0 1
a 1
1- -1
Ko5(a) ¢ lta aekK
1 0
2
0 1 1
1 0
-1 1
K26 1
0 1
0 2
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Table A.2. (Continued)

Name o Al A2 Parameters
1 0
a 1 1
-1 0
K> 7(a) 0 14a 1 aeK
—1+a 1
a 1
0 1
1 0 1
0 -1
Kzs 0 1 1
1 -1
1 0
1 0
a 1
14+a 1 1
K> 9(a) 0 1ta 1 aeK
1+ 2a 2
2(1+a) 2
0 1
1 0
1 11
K210 0 1 1
2 1
2 2

Table A.3. The Lie algebralL (4, 3).

Name o's Al A2 A3
1 0 0
0 1 0
0 0 1
Ka1 0 1 1 0
0 1 1
1 1 1
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